Evolutionary Optimization with Cumulative Step Length Adaptation — A Performance Analysis
نویسندگان
چکیده
Iterative algorithms for numerical optimization in continuous spaces typically need to adapt their step lengths in the course of the search. While some strategies employ fixed schedules for reducing the step lengths over time, others attempt to adapt interactively in response to either the outcome of trial steps or to the history of the search process. Evolutionary algorithms are of the latter kind. One of the control strategies that is commonly used in evolution strategies is the cumulative step length adaptation approach. This paper presents a first theoretical analysis of that adaptation strategy by considering the algorithm as a dynamical system. The analysis includes the practically relevant case of noise interfering in the optimization process. Recommendations are made with respect to the problem of choosing appropriate population sizes.
منابع مشابه
Optimum Tracking with Evolution Strategies
Evolutionary algorithms are frequently applied to dynamic optimization problems in which the objective varies with time. It is desirable to gain an improved understanding of the influence of different genetic operators and of the parameters of a strategy on its tracking performance. An approach that has proven useful in the past is to mathematically analyze the strategy's behavior in simple, id...
متن کاملQualms Regarding the Optimality of Cumulative Path Length Control in CSA/CMA-Evolution Strategies
Cumulative step-size adaptation (CSA) based on path length control is regarded as a robust alternative to the standard mutative self-adaptation technique in evolution strategies (ES), guaranteeing an almost optimal control of the mutation operator. This paper shows that the underlying basic assumption in CSA--the perpendicularity of expected consecutive steps--does not necessarily guarantee opt...
متن کاملCumulative Step Length Adaptation on Ridge Functions
The ridge function class is a parameterised family of test functions that is often used to evaluate the capabilities and limitations of optimisation strategies. Past research with the goal of analytically determining the performance of evolution strategies on the ridge has focused either on the parabolic case or on simple one-parent strategies without step length adaptation. This paper extends ...
متن کاملStep Length Adaptation on Ridge Functions
Step length adaptation is central to evolutionary algorithms in real-valued search spaces. This paper contrasts several step length adaptation algorithms for evolution strategies on a family of ridge functions. The algorithms considered are cumulative step length adaptation, a variant of mutative self-adaptation, two-point adaptation, and hierarchically organized strategies. In all cases, analy...
متن کاملA New Optimization Model for Designing Acceptance Sampling Plan Based on Run Length of Conforming Items
The purpose of this article is to present an optimization model for designing an acceptance sampling plan based on cumulative sum of run length of conforming items. The objective is to minimize the total loss including both the producer and consumer losses. The concept of minimum angle method is applied to consider producer and consumer risks in the optimization model. Also the average number o...
متن کامل